当前位置:首页 > 内容详情

正比例函数(正比例函数经过一三象限)

2025-10-02 20:55:59 作者:wangsihai

电话:18514096078

本文目录一览:

正比例函数是什么

正比例函数属于一次函数,是一次函数的一种特殊形式。即一次函数形如:y=kx+b(k为常数,且k≠0)中,当b=0时,则叫做正比例函数。 正比例函数属于一次函数,但一次函数却不一定是正比例函数。

正比例函数是一次函数的特殊形式,即一次函数 y=kx+b 中,若b=0,即所谓y轴上的截距为零,则为正比例函数。

正比例函数属于一次函数,是一次函数的特殊形式,即一次函数 y=kx+b 中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。

一般地,正比例函数y=kx(k是常数,k≠0)的图像是经过原点O(0,0)的一条直线。我们把正比例函数y=kx的图像叫做直线y=kx。

正比例函数属于一次函数,但一次函数却不一定是正比例函数,它是一次函数的一种特殊形式。即一次函数形如:y=kx+b(k为常数,且k≠0)中,当b=0时,即所谓“y轴上的截距”为零,则叫做正比例函数。

①正比例函数的定义:解析式形如y=kx(k≠0)的函数称为正比例函数,其中k称为斜率。

什么是正比例函数

正比例函数属于一次函数,是一次函数的一种特殊形式。即一次函数形如:y=kx+b(k为常数,且k≠0)中,当b=0时,则叫做正比例函数。 正比例函数属于一次函数,但一次函数却不一定是正比例函数。

正比例函数是一次函数的特殊形式,即一次函数y=kx+b中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。

一般地,正比例函数y=kx(k是常数,k≠0)的图像是经过原点O(0,0)的一条直线。我们把正比例函数y=kx的图像叫做直线y=kx。

正比例函数的定义:一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0),那么y=kx就叫做正比例函数。函数(function),数学术语。

正比例函数属于一次函数,但一次函数却不一定是正比例函数,它是一次函数的一种特殊形式。即一次函数形如:y=kx+b(k为常数,且k≠0)中,当b=0时,即所谓“y轴上的截距”为零,则叫做正比例函数。

具体回答如下:若两个变量x,y间的关系式可以表示为y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

什么是正比例函数?

正比例函数是一次函数的特殊形式,即一次函数 y=kx+b 中,若b=0,即所谓y轴上的截距为零,则为正比例函数。

正比例函数是两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0),那么y=kx就叫做正比例函数。正比例函数的关系式表示为:y=kx(k为比例系数)。

正比例函数属于一次函数,但一次函数却不一定是正比例函数,它是一次函数的一种特殊形式。即一次函数形如:y=kx+b(k为常数,且k≠0)中,当b=0时,即所谓“y轴上的截距”为零,则叫做正比例函数。

正比例函数属于一次函数,是一次函数的特殊形式,即一次函数 y=kx+b 中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。

正比例函数是一次函数的特殊形式,即一次函数 y=kx+b 中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。

正比例函数的定义:一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0),那么y=kx就叫做正比例函数。函数(function),数学术语。