大学微积分(大学微积分公式大全)
电话:18514096078
本篇文章给大家谈谈大学微积分,以及大学微积分公式大全对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、请问大学微积分是什么
- 2、大学数学微积分基础知识
- 3、大学微积分的内容有哪些
- 4、大学学习微积分有什么用?
- 5、大学微积分?
请问大学微积分是什么
微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的,主要内容包括极限、连续、可微和重积分,最重要的思想就是“微元”和“无限逼近”。微积分是微分学和积分学的总称,微分学就是‘无线细分’,积分学就是‘无限求和’,无限就是极限,微积分的基础就是极限的思想。
微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。 它是其余科目的基础,是重中之中。它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中,有越来越广泛的应用。
大学数学微积分基础知识
微积分是大学数学中研究函数的微分、积分以及有关概念和应用的数学分支。下面是我分享的大学数学微积分基础知识,一起来看一下吧。
历史
从微积分成为一门学科来说,是在17世纪,但是积分的思想早在古代就已经产生了。
积分学的早期史
公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线所得的体积的问题中就隐含着近代积分的思想。中国古代数学家也产生过积分学的萌芽思想,例如三国时期的刘徽,他对积分学的思想主要有两点:割圆术及求体积问题的设想。
微积分产生
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。数学首先从对运动(如天文、航海问题等)的研究中引出了一个基本概念,在那以后的二百年里,这个概念在几乎所有的工作中占中心位置,这就是函数——或变量间关系——的概念。紧接着函数概念的采用,产生了微积分,它是继欧几里得几何之后,全部数学中的一个最大的创造。围绕着解决上述四个核心的科学问题,微积分问题至少被十七世纪十几个最大的数学家和几十个小一些的数学家探索过。其创立者一般认为是牛顿和莱布尼茨。在此,我们主要来介绍这两位大师的工作。
实际上,在牛顿和莱布尼茨作出他们的冲刺之前,微积分的大量知识已经积累起来了。十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。
例如费马、巴罗、笛卡尔都对求曲线的切线以及曲线围成的面积问题有过深入的研究,并且得到了一些结果,但是他们都没有意识到它的重要性。在十七世纪的前三分之二,微积分的工作沉没在细节里,作用不大的细微末节的推理使他们筋疲力尽了。只有少数几个大数学家意识到了这个问题,如詹姆斯·格里高利说过:“数学的真正划分不是分成几何和算术,而是分成普遍的和特殊的”。而这普遍的东西是由两个包罗万象的思想家牛顿和莱布尼茨提供的。十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。
牛顿和莱布尼茨建立微积分的出发点是直观的.无穷小量,因此这门学科早期也称为无穷小分析,这正是现时数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。
牛顿
牛顿在1671年写了《流数术和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。
莱布尼茨
德国的莱布尼茨(又译“莱布尼兹”)是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一篇说理也颇含糊的文章,却有划时代的意义。它已含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现今我们使用的微积分通用符号就是当时莱布尼茨精心选用的。
基本内容
数学分析
研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。
从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。
微积分
微积分的基本概念和内容包括微分学和积分学。
微分学的主要内容包括:极限理论、导数、微分等。
积分学的主要内容包括:定积分、不定积分等。
大学微积分的内容有哪些
微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
【微积分书籍的目录】
第一章 函数、极限与连续
引言
第一节 函数
第二节 极限的概念
第三节
极限的运算法则和性质
第四节 极限存在准则与两个重要极限
第五节 无穷小与无穷大
第六节
连续函数的概念和性质
第七节 数学建模简介
第八节
极限定义的精确表述
阅读材料MATLAB环境下对函数与极限的讨论
第二章
导数与微分
引言
第一节 导数概念
第二节 函数的求导法则
第三节
高阶导数
第四节 隐函数的导数
第五节
函数的微分
阅读材料运用MATLAB求导
第三章
中值定理与导数的应用
引言
第一节 中值定理
第二节 洛必达法则
第三节
函数的单调性与曲线的凹凸性
第四节 函数的极值与最大值、最小值
第五节
函数图形的描绘
第六节 导数在经济中的应用
第四章 不定积分
引言
第一节
不定积分的概念与性质
第二节 换元积分法
第三节
分部积分法
阅读材料运用MAnAB求不定积分
第五章 定积分
引言
第一节
定积分的概念与性质
第二节 微积分基本公式
第三节 定积分的换元法和分部积分法
第四节
反常积分
第五节 定积分在几何学上的应用
第六节
定积分在经济分析中的应用
阅读材料运用MATLAB求定积分
第六章
多元函数微积分
引言
第一节 空间解析几何简介
第二节 多元函数的基本概念
第三节
偏导数
第四节 全微分
第五节 复合函数微分法与隐函数微分法
第六节
多元函数的极值及其求法
第七节 最小二乘法
第八节 二重积分的概念与性质
第九节
二重积分的计算
阅读材料MAnAB环境下的多元函数
第七章 无穷级数
引言
第一节
无穷级数收敛与发散的概念
第二节 收敛级数的基本性质
第三节 正项级数及其判别法
第四节
任意项级数的绝对收敛与条件收敛
第五节 幂级数
第六节 泰勒公式
第七节
函数的幂级数展开式
第八节
幂级数在近似计算中的应用
阅读材料MATLAB环境下函数的泰勒展开式
第八章
微分方程与差分方程简介
引言
第一节 微分方程的基本概念
第二节 可分离变量的微分方程
第三节
齐次方程
第四节 一阶线性微分方程
第五节 可降阶的二阶微分方程
第六节
二阶常系数线性微分方程
第七节 常微分方程在数学建模中的应用
第八节
差分方程简介
阅读材料运用MATLAB解微分方程
附录1预备知识
一、常用初等代数公式
二、常用基本三角公式
三、常用求面积和体积的公式
附录2几种常用的曲线
大学学习微积分有什么用?
这个问题就跟为什么要学数学一样,微积分在生活中的用处可能不大,但是,确实对思维的一个锻炼,世界上很多东西都不一定需要理由,或者说需要有用才会去学他。有一句话叫“存在即合理”,有时候我们不知道为什么要这样做,这是因为我们当下的认知和维度不够。像数学,数学是物理的基础,物理和数学的发展会推动世界的发展,,谁也不知道,会不会某一天你突然开窍懂了这其中的奥秘为人类社会的进步做出了一项巨大的贡献。
而微积分的出现解决了一直困惑人们的两个问题:第一是如何计算曲线上任意点的切线,即微分;第二是如何计算任意一块区域的面积,即积分。
所以即使很难也一定要学呀。
大学微积分?
关于大学微积分,阐述微积分与多项式的连结,从而导出讨论极限的动机,并指出微分和积分为物理观念提供的模型,经由此模型直觉的认识微积分基本定理。推荐先观看每个小节下链接里视频, 再看整理后的笔记内容.
微积分是什么
图片中间仙女后背的彩带写着拉丁文"算数", 左边一位正在使用刚传入欧洲的阿拉伯数字进行计算, 而右边那位正在用计算板算着什么, 其中上面用来做辅助计算的小石头就是 Calculus .
其实 Calculus 是单数.
它的复数是 Calculi, 现在又译为结石.
Calculus: 名词, 计算方法
Calculate: 动词, 计算
1684年,莱布尼茨在汉诺威担任图书馆馆长期间,发表了论文《一种求极大值、极小值和切线的新方法》, 这是世上第一篇公开发表的微分学论文.
Calculus 透过对"无穷"的理解与掌握发展出来的一套计算方法.
Calculus 分为两大类:
Differential Calculus(微分)
Integral Calculus(积分)
函数 vs 微分
瞬时的速度究竟在数学用极限来表示.
"导数测量的是瞬时变化率"这样的表述其实是有问题的,因为总是需要拿出两个时间点来做比较才能求出变化量. 所以函数在某点的导数还是视为在该点附近变化率的最佳近似好了.
面积 vs 积分
积分和导数已成为高等数学中最基本的工具,并在自然科学和工程学中得到广泛运用. 积分的一个严格的数学定义由波恩哈德·黎曼给出,称为“黎曼积分”. 黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限.
多项式函数
二次多项式函数
任意的 2 次多项式都可以经过配方转换为下面的形:
二次函数必有极值, 且图形都是简单二次函数图形 a x^2 平移的结果
三次多项式函数
它的图形是三次函数 y=a x^3+b x 的平移, 下面是一个示例, 这样的函数是奇函数,拐点(Inflection point, 台:反曲点)在(0,0)处, 而经过向左平移2, 向上平移 3 后的函数拐点在(2,3)处.
三次函数与二次函数不同之处:
三次函数一定会有拐点;
二次函数一定会有极值, 三次函数不一定有极值;1684年,莱布尼茨在汉诺威担任图书馆馆长期间,发表了论文《一种求极大值、极小值和切线的新方法》, 这是世上第一篇公开发表的微分学论文.
关于大学微积分和大学微积分公式大全的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。