常见三角函数值(数学常见三角函数值)
电话:18514096078
本篇文章给大家谈谈常见三角函数值,以及数学常见三角函数值对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、三角函数值有哪些?
- 2、常用三角函数值有哪些?
- 3、常见的三角函数值表有哪些?
- 4、常用三角函数值是什么?
三角函数值有哪些?
完整的三角函数值如下:
三角函数的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
常用的和角公式:
1、sin(α+β)=sinαcosβ+ sinβcosα
2、sin(α-β)=sinαcosβ-sinB*cosα
3、cos(α+β)=cosαcosβ-sinαsinβ
4、cos(α-β)=cosαcosβ+sinαsinβ
5、tan(α+β)=(tanα+tanβ) / (1-tanαtanβ)
常用三角函数值有哪些?
常用三角函数值:
sin0=sin0°=0
cos0=cos0°=1
tan0=tan0°=0sin15=0.650
sin15°=0.259
cos15=-0.759;cos15°=0.966
tan15=-0.855;tan15°=0.268
sin30°=1/2
cos30°=0.866
tan30°=0.577
sin45°=0.707
cos45°=0.707
tan45=1.620;tan45°=1
sin60=-0.305;sin60°=0.866
cos60=-0.952;cos60°=1/2
tan60=0.320;tan60°=1.732
sin75=-0.388;sin75°=0.966
cos75=0.922;cos75°=0.259
tan75=-0.421;tan75°=sin75°/cos75°=3.732
sin90=0.894;sin90°=cos0°=1
cos90=-0.448;cos90°=sin0°=0
tan90=-1.995;tan90°不存在
sin105=-0.971;sin105°=cos15°
cos105=-0.241;cos105°=-sin15°
tan105=4.028;tan105°=-cot15°
sin120=0.581;sin120°=cos30°
cos120=0.814;cos120°=-sin30°
tan120=0.713;tan120°=-tan60°
sin135=0.088;sin135°=sin45°
cos135=-0.996;cos135°=-cos45°
tan135=-0.0887;tan135°=-tan45°
sin150=-0.7149;sin150°=sin30°
cos150=-0.699;cos150°=-cos30°
tan150=-1.022;tan150°=-tan30°
sin165=0.998;sin165°=sin15°
cos165=-0.066;cos165°=-cos15°
tan165=-15.041;tan165°=-tan15°
sin180=-0.801;sin180°=sin0°=0
cos180=-0.598;cos180°=-cos0°=-1
tan180=1.339;tan180°=0
常见的三角函数值表有哪些?
完整初中三角函数值表如下图所示:
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
扩展资料:
起源
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。
三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。
我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。
印度人称连结弧(AB)的两端的弦(AB)为”吉瓦(jiba)”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了”sinus”。
常用三角函数值是什么?
常见三角函数值:
sin0=sin0°=0
cos0=cos0°=1
tan0=tan0°=0sin15=0.650
sin15°=0.259
cos15=-0.759;cos15°=0.966
tan15=-0.855;tan15°=0.268
sin30°=1/2
cos30°=0.866
判断三角函数值的符号
记忆口诀是:奇变偶不变,符号看象限。
1、当k是偶数时,得到α的同名函数值,即函数名不改变。
2、当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。(奇变偶不变),然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)
示例:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)0,符号为“-”。
所以sin(2π-α)=-sinα。
关于常见三角函数值和数学常见三角函数值的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。