正切的反函数(正切的反函数与余切的反函数的关系)
电话:18514096078
今天给各位分享正切的反函数的知识,其中也会对正切的反函数与余切的反函数的关系进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
y=sinx的反函数是什么?
反正弦函数。反正弦函数(反三角函数之一)为正弦函数y=sinx(x∈[-½π,½π])的反函数,记作y=arcsinx或siny=x(x∈[-1,1])。
反三角函数是一种基本初等函数。它是反正弦arcsinx,反余弦arccosx,反正切arctanx,反余切arccotx,反正割arcsecx,反余割arccscx这些函数的统称,各自表示其正弦、余弦、正切、余切,正割,余割为x的角。
反三角函数的分类:
1、反正弦函数
正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。
2、反余弦函数
余弦函数y=cosx在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1],值域[0,π]。
3、反正切函数
正切函数y=tanx在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。
4、反余切函数
余切函数y=cotx在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。
5、反正割函数
正割函数y=secx在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。
6、反余割函数
余割函数y=cscx在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。记作arccscx,表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。定义域(-∞,-1]U。
反三角函数反正切和公式 arctanA+arctanB=?
设arctanA=x,arctanB=y
因为tanx=A,tany=B
利用两角和的正切公式,可得:
tan(x+y)=(tanx+tany)/(1-tanxtany)=(A+B)/(1-AB)
所以 x+y=arctan[(A+B)/(1-AB)]
即arctanA+arctanB=arctan[(A+B)/(1-AB)]
拓展资料:
反三角函数并不能狭义的理解为三角函数的反函数,是个多值函数。三角函数的反函数不是单值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数 y=x 对称。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。
为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:
1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;
2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的);
3、为了使研究方便,常要求所选择的区间包含0到π/2的角;
4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。
参考资料:百度百科:反三角函数
函数y=cotx x∈(0,π)的反函数图像
y=cotx反函数的图像:
y=cotx的图像:
在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切 。
余切与正切互为倒数,用“cot+角度”表示。余切函数的图象由一些隔离的分支组成。余切函数是无界函数,可取一切实数值,也是奇函数和周期函数,其最小正周期是π。
扩展资料:
(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
(2)一个函数与它的反函数在相应区间上单调性一致;
(3)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。
奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(4)一段连续的函数的单调性在对应区间内具有一致性;
(5)严增(减)的函数一定有严格增(减)的反函数;
(6)反函数是相互的且具有唯一性
正切的反函数的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于正切的反函数与余切的反函数的关系、正切的反函数的信息别忘了在本站进行查找喔。